Generalized Attribute Distances Between Formal Concepts

  by   Martin Kovár, Marie Klimešová, Štěpán Křehlík


Abstract and usage:

Formal concept and formal context are two key notions of Formal Concept Analysis, introduced by B. Ganter and R. Wille at the end of the 70's. They are used in theoretical computer scince for various purposes, but especially in connection with data representation, organization and analysis. An important characteristic of a formal cotext is the generalized distance between its concepts. There are several modifications how it could be defined, in general it serves as a measure of similarity of these two concepts. A formal concept could be an object or a class of objects of a very general type, including mathematical or information structures, but not only. Among many other possibilities, there can be mentioned various algebraic or topological structures, data structures, models, dynamical systems, etc.

Our experimental application Formal Concept Atribute Distances checks first if the formal context and its two formal concepts are correctly given by the input. If so it calculates the four modifications of the generalized distance between the two given concepts. The calcullation is based on the properties of the framework associated with the formal context on the set of its attributes. The notion of a generalized distance is inspired by the notion of partial metrics due to S. Matthews. A source of inspiration of this application is also the joint research of the first author with his former student, A. Chernikava during her doctoral study. The coauthors, M. Klimešová and Š. Křeklík are the current doctoral students of the Department of Mathematics.

Input:

The set of objects:

The set of attributes:

The incidence relation:

The first formal concept:

The second formal concept:


 
Results:

The generalized distances of attributes in the given formal context:

Is the formal context correctly given?



Is the first given pair of sets a formal concept of the given formal context?



Is the second given pair of sets a formal concept of the given formal context?



The attribute concept distance of the first type:



The attribute concept distance of the second type:



The attribute concept distance of the third type:



The attribute concept distance of the fourth type:



 

The application Formal Concept Atribute Distances is written in Java powered by Wolfram webMathematica 3.1. The application is hosted at the server of the Department of Mathematics, Faculty of Electrical Engineering and Communication, Brno University of Technology. The results representing its theoretical background were presented by the authors on several scientific conferences as an integral part of their research. In case of interest in more detail, see [1] or contact the authors. For research and scientific activities the software is available free of charge. In all other cases, please contact RNDr. M. Novák, Department of Mathematics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 8, 616 00 Brno, phone: +420 5 4114 3135. Acknowledgement: FEKT-S-14/2200 "Reprezentace řešení dynamických systémů, numerické algoritmy řešení"

Powered by webMathematica